---title: "Risk Modelling Part 3: Implementation"date: 2025-12-12categories: [risk, series, code]---::: {.series-nav}::: {.series-nav-header}Series: Introduction to Risk Modelling (Part 3 of 3):::::: {.series-nav-links}::: {.series-nav-prev}[← Previous: Data](risk-series-2.html):::::: {.series-nav-next}:::::::::## Putting It TogetherArmed with the [theoretical foundations](risk-series-1.html) and [data sources](risk-series-2.html), we can now implement a basic risk model.## A Simple Loss Model```{python}import numpy as npdef simulate_losses(n_scenarios=10000, mean_hazard=0.1, exposure=1000000, vulnerability=0.3):""" Simple Monte Carlo loss simulation. """# Simulate hazard intensity (e.g., flood depth) hazard = np.random.exponential(mean_hazard, n_scenarios)# Calculate damage ratio based on vulnerability damage_ratio = np.minimum(hazard * vulnerability, 1.0)# Compute losses losses = exposure * damage_ratioreturn losses# Run simulationlosses = simulate_losses()# Key statisticsprint(f"Expected Loss: ${losses.mean():,.0f}")print(f"VaR 99%: ${np.percentile(losses, 99):,.0f}")print(f"Max Loss: ${losses.max():,.0f}")```## Key Implementation DecisionsWhen building production risk models, consider:1. **Correlation structure** - How do risks aggregate?2. **Tail dependence** - Do extreme events cluster?3. **Computational efficiency** - Can you run enough scenarios?4. **Validation** - How do you test the model?## Further ReadingThis series provides a foundation. For deeper dives:::: {.backlinks}#### Linked from- [Risk Modelling Part 2: Data](risk-series-2.html):::